Levy Type Solution for Nonlocal Thermo-Mechanical Vibration of Orthotropic Mono-Layer Graphene Sheet Embedded in an Elastic Medium
Authors
Abstract:
In this paper, the effect of the temperature change on the vibration frequency of mono-layer graphene sheet embedded in an elastic medium is studied. Using the nonlocal elasticity theory, the governing equations are derived for single-layered graphene sheets. Using Levy and Navier solutions, analytical frequency equations for single-layered graphene sheets are obtained. Using Levy solution, the frequency equation and mode shapes orthotropic rectangular nanoplate are considered for three cases of boundary conditions. The obtained results are subsequently compared with valid result reported in the literature. The effects of the small scale, temperature change, different boundary conditions, Winkler and Pasternak foundations, material properties and aspect ratios on natural frequencies are investigated. It has been shown that the non-dimensional frequency decreases with increasing temperature change. It is seen from the figure that the influence of nonlocal effect increases with decreasing of the length of nanoplate and also all results at higher length converge to the local frequency. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration proper ties of the nanoplates.
similar resources
Thermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics
This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...
full textThermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics
This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...
full textthermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics
this paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. the graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. nonlocal governing equations of motion for this double-layer graphene s...
full textNonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics
The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...
full textSmall Scale Effect on the Vibration of Orthotropic Plates Embedded in an Elastic Medium and Under Biaxial In-plane Pre-load Via Nonlocal Elasticity Theory
In this study, the free vibration behavior of orthotropic rectangular graphene sheet embedded in an elastic medium under biaxial pre-load is studied. Using the nonlocal elasticity theory, the governing equation is derived for single-layered graphene sheets (SLGS). Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. To verify the a...
full textAnalytical Approach for Thermo-electro-mechanical Vibration of Piezoelectric Nanoplates Resting on Elastic Foundations based on Nonlocal Theory
In the present work, thermo-electro vibration of the piezoelectric nanoplates resting on the elastic foundations using nonlocal elasticity theory are considered. In-plane and transverse displacements of the nanoplate have been approximated by six different modified shear deformation plate theories considering transverse shear deformation effects and rotary inertia. Moreover, two new distributio...
full textMy Resources
Journal title
volume 5 issue 2
pages 116- 132
publication date 2013-06-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023